
PHP
Angel R. Roman

Keyla Perez Velez
Michael Voss
Julian Richen

Group 12

Questions to be addressed

+ History
+ Development
+ Versioning
+ Compatibility
+ Usage

Introduction
PHP is a recursive acronym for "PHP: Hypertext Preprocessor". It’s a
scripting language used to develop web pages within HTML codes.
PHP is a server-side scripting language, which means that the code
is executed on the web server and not on the web browser, as a
result the client cannot view the code. PHP is a combination of
different programming languages such as Java, C and Perl. The
syntax of this scripting language is close to that of C programming
language.

PHP

Was created by Rasmus Lerdorf in 1994. It was
initially developed for HTTP usage logging and
server-side form generation in Unix

PHP 2 (1995)

Transformed the language into a Server-Side
embedded scripting language. Added database
support, file uploads, variables, arrays, recursive
functions, conditionals, iteration, regular
expressions, etc.

PHP 3 (1998)

Added support for ODBC data sources, multiple
platform support, email protocols (SNMP, IMAP),
and new parser written by Zeev Suraski and Andi
Gutmans.

PHP 4 (2000)

Became an independent component of the web
server for added efficiency. The parser was
renamed the “Zend Engine”. Many security features
were added.

PHP 5 (2004)

Added “Zends Engine II” with object oriented
programming, robust XML support using the
libxml2 library, SOAP extension for interoperability
with Web Services, SQLite has been bundled with
PHP. Was the first version to really advance since it
added Object Oriented programming.

PHP 6 (Never Released)

The decision was to use Full UTF-16 support which
negatively impacted performance. A Large
population realized this problem in the open
source community and weren't interested in the
project.

PHP 7 (2015)

Added “Zends Engine IIl” with numerous
improvements and new features such as reduce
memory usage, consistent 64-bit support, secure
random number generator, return and scalar type
declarations, anonymous classes, and zero cost
asserts. (Side note: PhP7 is twice as fast as PhP5.6

Compatibility
Web Servers

Apache, NGINX,
Microsoft IIS, Caudium,
Netscape Enterprise
Server

Operating Systems

UNIX, Mac OS X,
Windows
NT/98/2000/XP/2003

Databases

Adabas D, dBase,
Empress, FilePro,
Hyperwave, IBM DB2,
Direct MS-SQL, MySQL,
ODBC, Oracle, Ovrimos,
PostgreSQL, SQLite,
Solid, Sybase, Velocis,
Unix dbm

244,000,000
Websites have PHP installed

2,100,000
Web Servers have PHP Installed

Question!

Learn PHP*
In 2 minutes
*Basic run down, works best if you know another language already.

<?php

// php code

?>

This won’t work: This will work:

<?php//php code?> <?php //php code ?>

PHP Tags

Variables, Typing, & printing
+ Variables start with $ sign
+ Typing is done automatically
+ Variables can switch between types
+ Printing does not need to be formated
+ Concatenation is done with periods
+ Double quotes display escaped characters
+ Single quotes almost always display

message as-is

+ Types:
+ boolean/bool
+ integer/int
+ float/double
+ string
+ array
+ object
+ callable
+ null
+ resource

<?php

$exampleString = "Hello World";
$exampleInt = 10;
$exampleBool = true;

echo "Hello World\n"; // Hello World
echo "String: " . $exampleString . "\n"; // String: Hello World
echo "Int: $exampleInt\n"; // Int: 10
echo "Bool: {$exampleBool}ish" . "\n"; // Bool: 1ish
echo 'Fails: $exampleString' . "\n"; // Fails: $exampleString

Variables, printing, & comments

<?php

print ("My String\n"); // My String

You can also use the print() function

<?php

die ("Critical failure, abort!\n");

// or..

exit (1); // Error code or string

Add die() to kill the script and print string

<?php

define ('A_DEFINE_MSG', 'Hello World');

echo A_DEFINE_MSG . "\n";

// or...

echo constant ("A_DEFINE_MSG") . "\n";

Constants

<?php

$example = "I'm a string!";

echo "$example\n"; // I'm a string!

$example = 52;

echo "$example\n"; // 52

Types are not enforced

<?php

$a = (false && true);
$b = (true || false);
$c = (false and false);
$d = (true or false);

echo (int)$a; // 0
echo (int)$b; // 1
echo (int)$c; // 0
echo (int)$d; // 1

Operators & examples of casting
<?php

$add = 2 + 2;
$sub = 8 - 5;
$div = 8 / 2;
$mlt = 9 * 9;

echo "2 + 2 = {$add}\n"; // 2 + 2 = 4
echo "8 - 5 = {$sub}\n"; // 8 - 5 = 3
echo "8 / 2 = {$div}\n"; // 8 / 2 = 4
echo "9 * 9 = {$mlt}\n"; // 9 * 9 = 81

<?php

$status = true;

if ($status == true) {
 echo "true\n";
} else if ($status == false) {
 echo "false\n";
} else {
 echo "Not bool\n";
}
// Echos: true

If statement

<?php

$arr1 = array ("a", "b", "c");
$arr2 = ["apple", "banana", "clementine"];

echo $arr1[0] . ", " . $arr1[1] . ", & " . $arr1[2] . "\n";
// a, b, & c

for ($i = 0; $i < count ($arr2); $i++) {
 echo "{$arr2[$i]} ";
}
// apple banana clementine

Arrays & loops

<?php

function funcName ($param1, $param2 = "") {
 return "$param1 $param2";
}

echo funcName ("Hello", "World"); // Hello world

echo funcName ("Bonjour"); // Bonjour

Functions

<?php

class Calculator {

 private $total = 0;

 public function add ($a) {
 $this->total += $a;
 }

 public function sub ($s) {
 $this->total -= $s;
 }

 public function result () {
 return $this->total;
 }

}

Classes & initializing them

$calc = new Calculator ();

$calc->add (10);
$calc->sub (5);

echo $calc->result (); // 5

Question!

CONCLUSION
PHP is a powerful and useful scripting language
and interpreter used in many modern websites. It
has many uses, but is commonly implemented to
create dynamic web content. PHP is included in
over 240 million websites and rising!

Thanks!
Any questions?

References

+ "PHP: History of PHP - Manual." PHP: History of PHP - Manual. N.p., n.d. Web. 14 Nov. 2016.

+ Pohjolainen, Jessi. "Introduction to PHP." TAMK University of Applied Sciences, n.d. Web. 23
Sept. 2008.

